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The Frattini module and p
′-automorphisms of

free pro-p groups.
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Darren Semmen ∗

Abstract

If a non-trivial subgroup A of the group of continuous automorphisms of a non-
cyclic free pro-p group F has finite order, not divisible by p, then the group of fixed
points FixF (A) has infinite rank.

The semi-direct product F>!A is the universal p-Frattini cover of a finite group
G, and so is the projective limit of a sequence of finite groups starting with G, each
a canonical group extension of its predecessor by the Frattini module. Examining
appearances of the trivial simple module 111 in the Frattini module’s Jordan-Hölder
series arose in investigations ([FK97], [BaFr02] and [Sem02]) of modular towers. The
number of these appearances prevents FixF (A) from having finite rank.

For any group A of automorphisms of a group Γ, the set of fixed points

FixΓ(A) := {g ∈ Γ | α(g) = g, ∀α ∈ A} of Γ under the action of A is a

subgroup of Γ. Nielsen [N21] and, for the infinite rank case, Schreier [Schr27]

showed that any subgroup of a free discrete group will be free. Tate (cf. [Ser02,

I.§4.2, Cor. 3a]) extended this to free pro-p groups. In light of this, it is natural

to ask for a free group F , what is the rank of FixF (A)?

When F is a free discrete group and A is finite, Dyer and Scott [DS75]

demonstrated that FixF (A) is a free factor of F , i.e. F is a free product of

FixF (A) and another free subgroup of F , thus bounding the rank of FixF (A)

by that of F itself. That this bound would hold for A that are merely finitely

generated was a conjecture attributed to Scott; this was proven first by Ger-

sten [Ge87] and later, independently, by Bestvina and Handel [BH92] in a
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program analogizing, to outer automorphisms of free groups, Thurston’s clas-

sification of mapping classes.

But when F is a free pro-p group, this depends on whether the order of

A is divisible by p. When A is a finite p-group, FixF (A) will again be a free

factor of F , first shown by Scheiderer [Sche99] for F having finite rank, and

extended by Herfort, Ribes, and Zalesskii [HRZ99] to the general case. It is not

yet known whether the rank of FixF (A) will be bounded by that of F when

A is an arbitrary (even finitely generated) pro-p group. Contrarily, Herfort

and Ribes [HR90] showed much earlier that if F is non-cyclic and α is a non-

trivial continuous automorphism of F of finite order, not divisible by p, then

FixF (〈α〉) has infinite rank; their proof relies on combinatorial group theory for

free pro-p groups and Thompson’s theorem on the nilpotency of finite groups

with fixed-point-free automorphisms of prime order.

Using instead the construction of a free pro-p group by taking the projec-

tive limit of a canonical sequence of finite p-groups, and the modular represen-

tation theory attached to this sequence, we generalize the result of Herfort and

Ribes to any non-trivial finite group A of automorphisms having order prime

to p, not merely the cyclic case 〈α〉.

A note on reading this paper. The first four sections of this paper

consist of background material, and state results largely without proof. For

results given no explicit reference, the following sources may be consulted.

Fried and Jarden [FJ86, Chapters 1, 15, & 20] provide all the coverage we need

on profinite groups, and on the universal Frattini cover (§2) as well. For §2

and the first half of §3, also visit Fried’s introduction to modular towers [Fr95,

Part II, p.126-136]. Benson has written a dense primer [Be98, Chapter 1]

on modular representation theory, which can help with §3 and the sometimes

folkloric contents of §4.

§1. Free profinite groups.

A profinite group is a projective (inverse) limit of finite groups, regarded

as topological groups with the discrete topology. A morphism in the cate-

gory of profinite groups is a continuous group homomorphism. One important

lemma [FJ86, Lem. 1.2] is that the projective limit of any surjective system

(i.e. an inverse system all of whose maps are surjective) of finite sets will surject

onto every set in the system.

A profinite group F is free on a set S converging to 1 if and only if it

satisfies the following three conditions. First, S ⊆ F must converge to 1 in F ,

i.e. only a finite number of elements of S lie outside any open subgroup of F .
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Second, S must generate F . Third, given any map taking S into a profinite

group G such that the image converges to 1 in G, there exists a unique extension

of said map to a morphism from F to G. The rank of F is the cardinality of S.

Projective groups are very close to free groups: a profinite group is pro-

jective if and only if it is a closed subgroup of a free profinite group. (Hence,

closed subgroups of projective groups are also projective.) The property of be-

ing projective is categorical. An object X is projective if, whenever there is a

morphism ϕ from X to an object A and an epimorphism φ from another object

B to A, there exists a morphism ϕ̂ : X → B such that φ ◦ ϕ̂ = ϕ. Note that, in

the categories of groups and modules, a morphism φ is surjective if and only if

it is epic: a morphism φ : B → A is epic if, given any morphisms ψi : A → Y

for i = 1, 2 with ψ1 ◦ φ = ψ2 ◦ φ, ψ1 must equal ψ2.

For a rational prime p, a pro-p group is merely a profinite group all of

whose finite quotients (by closed normal subgroups) are p-groups. Pro-p groups

form a subcategory with the property [FJ86, Prop. 20.37] that all of the pro-

jective objects are free with respect to the subcategory, in the sense that the

G’s in the above definition of “free” must all be pro-p groups.

Finally, the Schreier formula for free groups holds whether the free

groups are discrete, profinite or pro-p:

Theorem 1.1 (Nielsen-Schreier [FJ86, Prop. 15.27]). If a sub-

group H of a free group F has finite index, it is free; furthermore, if F has

finite rank r, the rank of H is 1 + (r − 1)(G : H).

§2. The universal Frattini cover.

The Frattini subgroup Φ(G) of a profinite group G is the intersection

of all maximal proper closed subgroups of G. Note the analogy to the Jacobson

radical of an algebra. The Frattini subgroup of a (pro)finite group is also

(pro)nilpotent, a consequence of the Frattini argument from whence it gets its

name: given a normal subgroup K of G and a p-Sylow P of K, G = NG(P ) ·K,

where NG(P ) is the normalizer of P in G.

The Frattini subgroup of a pro-p group has another characterization [FJ86,

Lem. 20.36]: it is the closed normal subgroup generated by the commutators

and the pth-powers. Put another way, G/Φ(G) is the maximal elementary

abelian quotient of the pro-p group G. The Frattini series is just the descending

sequence of iterations Φn+1(G) = Φ(Φn(G)). This series forms a neighborhood

basis of 1 in a pro-p group, i.e. the intersection of all of the terms is trivial.

We can also view “Frattinity” categorically. We say an epimorphism ϕ :

X ! A is a Frattini cover if the kernel is in the Frattini subgroup of X .
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Equivalently, given any epimorphism φ : B ! A and any morphism ψ : B → X

such that ϕ ◦ ψ = φ, the morphism ψ must be surjective. Note that, in the

category of epimorphisms to A, an object which has the property that all

morphisms to the object are epic will be a Frattini cover of A. We might

call this a Frattini object. The object X is also commonly referred to as the

“Frattini cover” of A; we shall do so as well.

Every profinite group G has a universal Frattini cover G̃, a Frattini cover

which is projective as a profinite group. (Simply find an epimorphism ϕ from a

free profinite group onto your given group G — the universal Frattini cover will

be a minimal closed subgroup H of the free group such that ϕ(H) = G.) Since

the kernel K of our epimorphism from G̃ to G is pronilpotent, i.e. a direct

product of its p-Sylows (maximal pro-p subgroups), G̃ will be the fibre product

over G of the universal p-Frattini covers pG̃, where pG̃ is just the quotient

of G̃ by the maximal closed subgroup of K having no p-group quotient. The

universal p-Frattini cover is also characterized by being the unique p-projective

Frattini cover of G, p-projective meaning projective only with respect to covers

(epimorphisms) with pro-p group kernel; being p-projective is equivalent [FJ86,

proof of Prop. 20.47] to having free p-Sylows.

For a finite group G, the universal p-Frattini cover pG̃
ϕ
! G will be the

projective limit of the finite quotients produced by the Frattini series of the ker-

nel ker0 = ker(ϕ). Inductively define kern+1 = Φ(kern) and Gn = pG̃/ kern.

Since each kern is a pro-p group, the quotient Mn = kern / kern+1 will be an

elementary abelian p-group and, in fact, an FpGn-module, with the action of

an element of Gn induced by conjugation, after lifting to Gn+1: g ·m = ĝmĝ−1

for any ĝ such that g = ĝ · kern / kern+1.

§3. The Frattini module.

Assume now that G is finite. In the preceeding discussion, we produced

a canonical sequence of finite groups whose projective limit was the universal

p-Frattini cover pG̃, but only by taking quotients of pG̃. This approach de-

pends on knowledge of pG̃, currently a mysterious object. Fortunately, we may

inductively construct Gn+1 using the modular representations of Gn.

For FpG-modules, projectivity has the same categorical definition given in

§1. Several properties are analogous to those given earlier for profinite groups.

An FpG-module is projective if and only if it is a direct summand of a free

module. It is also projective if and only if [Be98, Cor. 3.6.10] its restriction to

a p-Sylow P of G is a free FpP -module. We will denote the restriction of an

FpG-module M to a subgroup X of G by M↓FpX .
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The projective cover PFpG(M) of a finitely generated FpG-module M is

the minimal projective FpG-module which has an epimorphism φ : PFpG(M) !

M ; the kernel is denoted ΩM — Ω is known as the Heller operator. An

FpG-module S is called simple if it has no proper non-trivial FpG-submodules.

There is always a 1-dimensional simple FpG-module 111FpG having trivial G-

action; when there will be no ambiguity, the subscript identifying the group

ring may be omitted. Gaschütz [Ga54] produced the Frattini module by

iterating the Heller operator twice on 111FpG:

Theorem 3.1 (Gaschütz [Fr95, Lem. 2.3, p.128]).

As FpG-modules, M0 * Ω2111FpG = Ω(Ω111FpG).

The Heller operator is the dimension-shift operator on group cohomol-

ogy [Be98, Prop. 2.5.7], so H2(G, M0) will be 1-dimensional [Fr95, Prop. 2.7,

p.132] and there will be only one non-split extension of G by M0, up to isomor-

phism of groups. This will be G1.

Since pG̃ is also the universal p-Frattini cover of G1, we may use induction

to see that Mn * Ω2111FpGn and Gn+1 will be the unique non-split extension of

Gn by Mn.

A block of FpG is an indecomposable two-sided ideal direct summand

of the ring FpG. Every indecomposable (i.e. having no proper non-trivial

direct summands) FpG-module M is contained in some block B; this means

that B′ · M = 0 for every block B′ += B. The principal block is the one

containing 111FpG The kernel of a block is simply the set of elements of G that act

trivially on all modules contained in the block, i.e. the kernel of the composition

G ↪→ FpG ! B mapping G into the units of the ring B.

We now record a few results on the Frattini module. The standard notation

for the maximal normal p′-subgroup (i.e. having order prime to p) of G is

Op′(G). Using Brauer’s identification of Op′(G) as the kernel of the principal

block, Griess and Schmid [GS78] proved that Op′(G) was exactly the kernel of

the action of G on M0 whenever M0 had dimension greater than one. They

also identified precisely when the latter happens:

Theorem 3.2 (Griess-Schmid [GS78, Cor. 3, p.264]). The dimen-

sion of M0 over Fp is one if and only if G is p-supersolvable with cyclic p-Sylows.

A group G is p-supersolvable if and only if G/Op′(G) has a normal p-

Sylow such that the quotient is abelian of exponent dividing p− 1; this is quite

restrictive.
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We denote by #S(M) the number of appearances of a simple FpG-module

S in a Jordan-Hölder series of a given FpG-module M . Define the density

ρS(M) of S in M to be #S(M)/dimFp(M).

Theorem 3.3 (Density Theorem [Sem02]). If dimFp(M0) += 1 then

lim
n→∞

ρS(Mn) = ρS(FpG/Op′(G)), for any simple FpG-module S.

The converse will also hold unless G/Op′(G) is a cyclic p-group.

§4. Groups with normal p-Sylow.

Throughout this section, G will be a finite group with normal p-Sylow P

and complement A, i.e. G * P>'A, the semi-direct product.

In this case, the universal p-Frattini cover has a simpler description. Sup-

pose r is the minimal number of generators of P and F is a free pro-p group

having rank r and a given epimorphism φ : F ! P . Then A has an embed-

ding into the continuous automorphisms of F such that its action will stabilize

ker(φ) and its action on the quotient F/ ker(φ) will correspond to its action on

P via the canonical isomorphism. The universal p-Frattini cover of G will be

the semi-direct product F>'A defined by this action, cf. [BaFr02, Rem. 5.2]

and [R85].

Example. [Fr95, §II.A, p.126] If G = Dp is the dihedral group of order

2p, then pG̃ will be the semi-direct product Zp>'C2, where conjugation by the

non-trivial element of the group C2 of order 2 inverts the elements of the p-

adic integers Zp; the canonical quotients Gn will be the dihedral groups Dpn+1

of order 2pn+1. (These quotient groups appear as the Galois groups for cov-

ers of the punctured projective sphere in the Hurwitz space construction of

the sequence of modular curves X0(pn); replacing Dpn+1 by Gn leads us to

Fried’s [Fr95, §III.C, p.144] modular towers when G is centerless and p-perfect.

The fact [FK97, Lem. 3.2, p.167] that obstruction of components of the Hur-

witz spaces in modular towers can only arise from appearances of 111FpG in a

Jordan-Hölder series of M0 motivated the examination of ρ111(Mn).) The mod-

ules Mn in this case are 1-dimensional over Fp, with the p-Sylow of Dpn+1 acting

trivially and the reflection in C2 acting via mulitplication by −1.

When P is non-cyclic, the canonical quotients Gn and the modules Mn

are not so easily described, even, for example, when G is the alternating group

A4 or the Klein 4-group. However, the normality of the p-Sylow still strongly
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affects the modular representation theory of G; we’ll now collect four results

we’ll need.

First, observe that we can calculate dimFp(M0) explicitly when G is a p-

group P . Since projective FpP -modules must be free, PFpP (111) * FpP , and

Ω111FpP will be the augmentation ideal of FpP . This is well-known to have the

same number of generators r as a module that P has as a group, so PFpP (Ω111)

will be isomorphic to the direct sum of r copies of FpP . Hence, dimFp(M0)

will equal dimFp(PFpP (Ω111)) minus the dimension over Fp of the augmentation

ideal, i.e. 1 + (r − 1)|P |. Note the similarity to the Schreier formula; for pro-p

groups, one can be derived from the other.

Second, examine the density ρ111(FpG). The restriction of the FpG-module

N = FpG⊗FpA 111FpA to P will be isomorphic to the group ring FpP , and hence

N has no proper non-trivial projective submodule. But the quotient of N by

the submodule generated by {(g − 1)⊗m | g ∈ P and m ∈ 111FpA} is isomorphic

to 111FpG, so N will be the projective cover of 111FpG.

For any finite group Γ, #111(FpΓ) = dimFp(PFpΓ(111)), cf. [Be98, Lem. 1.7.7

& Prop. 3.1.2] Therefore,

ρ111(FpG) =
#111(FpG)

dimFp(FpG)
=

dimFp(N)

|G|
=

|P |

|G|
=

1

|A|
.

Third, Ω2111FpG↓FpP* Ω2111FpP , so our first observation allows us to explicitly

calculate dimFp(Ω2111FpG) to be 1 + (r − 1)|P |. This can be seen through Ribes’

result in the second paragraph of this section, since in either case the Frattini

module will be isomorphic to ker(φ)/Φ(ker(φ)). Alternatively, and equivalently,

one could use representation theory to prove this. We just saw that PFpP (111) *

PFpG(111)↓FpP ; it turns out that this isomorphism preserves the two modules’

radical series, i.e. the product of the module with the successive powers of the

Jacobson radical of the group algebra. For example, see [Sem02].

Finally, remember Maschke’s theorem:

Theorem 4.1 (Maschke [Be98, Cor. 3.6.12]). If a finite group A

has order relatively prime to the characteristic of the field k, then kA is semi-

simple.

In other words, FpA-modules will have trivial cohomology, since there can

be no non-split exact sequences of FpA-modules.
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§5. Automorphisms of free groups.

Note that if a pro-p group is (topologically) finite generated, Serre [Ser75]

has shown that all of its subgroups having finite index are open; Anderson [A76,

Thm. 3] uses, and extends, the proof. Consequently, any automorphism of a

(topologically) finitely generated pro-p group will be continuous.

Theorem 5.1. If a non-trivial subgroup A of the group of continuous

automorphisms of a non-cyclic free pro-p group F has finite order, not divisible

by p, then the group of fixed points FixF (A) has infinite rank.

Proof. The intuition is that the Density Theorem will force the rank of

Fixkern(A) to be bounded below by a fixed proportion of the rank of kern, but

this growth in its rank is too much for the Schreier formula to allow if FixF (A)

were to have finite rank. To make this concrete, we need some notation.

Let G be the semi-direct product F/Φ(F )>'A: since Φ(F ) is characteristic

in F , A will act canonically on F/Φ(F ) and we can regard α ∈ A as acting via

conjugation — αx := αxα−1 = α(x). The universal p-Frattini cover pG̃ of G

is just F>'A with ker0 = Φ(F ). We define kern, Gn, and Mn as before, and

for convenience write Fn in place of F/ kern. Since the p-Sylow F/Φ(F ) of G

is non-cyclic, the theorem of Griess-Schmid shows that the condition for the

Density Theorem holds. By a theorem of Philip Hall [Ha63, Thm. 12.2.2] , any

group, having order prime to p, of automorphisms of a pro-p group P must act

faithfully on P/Φ(P ): FixFn(A) will be a proper subgroup of Fn for all n.

Consider the possibility that F has infinite rank, but FixF (A) has not.

In this case, take any element x of F not fixed by A and consider the closed

subgroup of F generated by the union of the orbit of x under A and a finite

set of (topological) generators of FixF (A). As a closed subgroup of a free pro-p

group, this will also be free pro-p, but now of finite rank and with a non-

trivial quotient of A acting faithfully as continuous automorphisms. But then

FixF (A) would be the subgroup of fixed points of A inside this finite rank free

pro-p group. So, assume that F and FixF (A) have finite ranks r > 1 and s,

respectively.

Let us first see that Fixkern(A)/Fixkern+1
(A) * FixMn(A); this is equiva-

lent to FixFn(A) forming a surjective system whose projective limit is FixF (A).

(Note that Fixkern(A) is just FixF (A) ∩ kern.) Given x in FixFn(A), con-

sider an element x̂ of the preimage of {x} under the natural quotient map

ϕn : Fn+1 ! Fn. The assignment α /→ aα := αx̂x̂−1 is a 1-cocycle for A with

values in Mn: αaβaαa−1
αβ = 1, writing Mn multiplicatively. Since (|A|, p) = 1,

Maschke’s theorem applies and Mn↓FpA has trivial cohomology. Hence, there
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exists a µ ∈ Mn such that aα = αµµ−1 for all α in A. The element µ−1x̂ of

ϕ−1
n ({x}) is then fixed by A.

Since FixF (A) is a closed subgroup of the free pro-p group F , it must also

be free, and so we can use the Schreier formula to compute the rank of its

subgroups Fixkern+1
(A):

rank of Fixkern+1
(A) = 1 + (s − 1)|FixF (A)/Fixkern+1

(A)|

= 1 + (s − 1)|FixF (A)/Fixkern(A)||FixMn(A)|

≤ 1 + (s − 1)|Fn||FixMn(A)|.

As noted before, the density ρ111(FpG) is 1/|A|. By the Density Theorem,

lim
n→∞

logp |FixMn(A)|

logp |Mn|1/|A|
= lim

n→∞

dimFp(FixMn(A))
1
|A| · dimFp(Mn)

= |A| · ρ111(FpG) = 1.

Since |A| > 1, there must then exist a real number ε ∈ (0, 1) and a positive

integer N such that |FixMn(A)| < |Mn|ε for all n > N . Now use the identities

dimFp(Mn+1) = 1 + (r − 1)|Fn+1| and |Fn+1| = |Fn| · |Mn|, and the fact that

|Fn| and |Mn| increase monotonically and without bound, to get:

lim
n→∞

rank of Fixkern+1
(A)

dimFp(Mn+1)
≤ lim

n→∞

1 + (s − 1)|Fn||FixMn(A)|

1 + (r − 1)|Fn||Mn|

= lim
n→∞

(s − 1)|FixMn(A)| · |Mn|−ε

(r − 1)|Mn|1−ε

= 0.

Another use of the Density Theorem gives a contradiction:

lim
n→∞

rank of Fixkern+1
(A)

dimFp(Mn+1)
≥ lim

n→∞

dimFp(FixMn+1
(A))

dimFp(Mn+1)

= ρ111(FpG)

=
1

|A|
> 0. "

We can actually do better in the infinite rank case than this proof might

indicate. A slight generalization of [BaFr02, Prop. 5.3] to profinite p-Sylows

will show that even if A fixes no non-trivial element of F/Φ(F ), a possibility

even if F has infinite rank, then the rank of FixΦ(F )/Φ2(F )(A) will already be

infinite.
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